
NAIC-ID(RS)T-0021-95

NATIONAL AIR INTELLIGENCE CENTER

INTERMEDIATE LANGUAGE DESIGN AND REALIZATION ASSOCIATED
WITH PC DECOMPILATION SYSTEMS

by

Li Hongmang, Liu Zongtian, Zhu Yifen

DTIC
BELEGTE

JUN 1 2 1995

19950608 005 Approved for public release:
distribution unlimited

DTIC QUALITY INSPECTED 3

NAIC- ID(RS)T-0021-95

HUMAN TRANSLATION

NAIC-ID(RS)T-0021-95 26 May 1995

MICROFICHE NR: ^S^O^03^7

INTERMEDIATE LANGUAGE DESIGN AND REALIZATION ASSOCIATED
WITH PC DECOMPILATION SYSTEMS

By: Li Hongmang, Liu Zongtian, Zhu Yifen

English pages: 17

Source: Xiaoxing Weixing Jishanji, Vol. 12, Nr. 2, 1991;
pp. 23-28; 46

Country of origin: China
Translated by: SCITRAN

F33657-84-D-0165
Requester: NAIC/TATA/Keith D. Anthony
Approved for public release: distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-
RIAL COMMENT STATEMENTS OR THEORIES ADVO-
CATED OR IMPLIED ARE THOSE OF THE SOURCE AND
DO NOT NECESSARILY REFLECT THE POSITION OR
OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

PREPARED BY:

TRANSLATION SERVICES
NATIONAL AIR INTELLIGENCE CENTER
WPAFB, OHIO

NAIC-ID(RS)T-0021-95 Date 26Mayl995

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available,

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

a
□

By
Distribution /

INTERMEDIATE LANGUAGE DESIGN AND REALIZATION ASSOCIATED
WITH PC DECOMPILATION SYSTEMS

Li Hongmang Liu Zongtian Zhu Yifen

ABSTRACT

Intermediate language, in decompilation systems,_
takes on an intermediary function associated with a link
connecting what comes first with what comes after. Since it
is a more advanced standardization of compilation language, it
also contains basic structures associated with high level
lanauaaes. This article introduces intermediate language
assign and realization methods associated with C language

decompilation systems on PC machines.

I. INTRODUCTION

Decompilation acts as a software understanding tool and is

the key constituent part associated with reversed software

processes. The function is to take machine code and transform it

into functionally equivalent high level language which is easy to

understand and protect. During transformation processes, first

of all, structural analysis and functional analysis is carried

out on machine code. Following that, on the basis of appropriate

matching transformation rules, program control flow paths are

taken and transformed from linear structures into structured

forms. At the same time, variables in machine code are taken

and, utilizing information recovery, restored to become higher

level language variable and type explanations.

On Dual 68000, we already realized decompilation systems

from 68000 to C [1]. In order to make decompilation techniques

possess even more adaptable and practical natures, at the present

time, we carried out design and realization of decompilation

systems on PC machines. Due to PC machine command flexibility

and symbol table information not being included in target codes,

as a result, degrees of difficulty and complexity were relatively

great. In order to lower system complexity, modualized

structures associated with systems were strengthened. We opted

for the use of decompilation methods associated with using

intermediate language as intermediary. First of all, 8086/8087

commands were taken and transformed into intermediate language.

After that, on intermediate language boundary surfaces, control

flow and data flow analyses were carried out. Due to unigue
characteristics of PC machines, intermediate language design

requires confronting flexible 8086 command systems. As a result,

degrees of difficulty are relatively great. However, with regard

to the adaptability and practical nature of decompilation

technology, it will play important roles.

II. DESIGN THINKING ASSOCIATED WITH INTERMEDIATE LANGUAGE

The generality of intermediate languages are mostly used in

situations geared to the needs of machine language
transformations, that is, transformations are from high level

forms into intermediate code. After that, it is reformed into

machine code. If, in compilation programs, use is made of such

intermediate codes as ternary forms and quaternary forms, they

will often stress compatibility downward. As a result, such
problems as code efficiencies, capability of transplantation, and

memory space occupied by code are inevitably encountered.

However, during decompilation, intermediate language is geared

toward high level language transformations. It fits between

machine language and high level language. Since it is a further

standardization of machine language, it necessarily also contains

basic structures associated with high level language. As a

result, intermediate language requirements in decompilation are

also even more complicated. If it will be able to display fixed

categories of machine language, it will also possess certain

independent characteristics. The representation forms and

structures must also be appropriate to program analysis,

restructuring, and transformation. Because of this, a practical

intermediate language geared to high level language transformations

possesses the characteristics below:
(1) All operation numbers opt for the use of unified forms

of processing.
(2) All operation numbers are uniformly capable of

clarification inquiries.
(3) Space occupied by commands and data are not mutually

related, that is, the two do not occupy the same address space.
(4) Command block physical sequences are independent of the

physical sequences associated with original machine language
/24 programs.

(5) Command and operation number forms must be appropriate

to data type decisions.
(6) Intermediate languages should possess certain

"deformation" capabilities, that is, possess a number of new

organizational control flow path commands in order to suit the

level by level abstraction associated with control analysis.
(7) Intermediate language program structures should opt for

the use of similar high level language program structures in

order to fit the production of high level language programs.

III. INTERMEDIATE LANGUAGE DESIGN

In decompilation processes, intermediate languages are

intermediaries between machine language and high level language.

Key processes associated with decompilation are all carried out

in this intermediate language. As a result, the design of

practical intermediate languages is unusually important [2].

During the development processes of this task, on the basis of

the characteristics of 8086 machine language and C language, we

meticulously designed an intermediate language which is

relatively comprehensive. It primarily contains six constituent

parts: intermediate language program structures, command

systems, addressing forms, command block types, data types, and

control flow graphics. Below we discuss each one in detail.

1. Intermediate Language Program Structures

Among high level languages, some are layered structures—for

example, such languages as PASCAL and ALGOL. Some are nonlayered

parallel structures—for example, function type language C and so

on. Whether or not they are layered or nonlayered, target codes

formed after high level language compilation are uniformly linear

structures. The relationships of the various subprograms are all

contained among transfer relationships associated with functions

and processes. Due to the disappearance of such high level

language components as explain forms of expression and data

types, limits associated with functions and processes in machine

code have all already disappeared. Because of this, intermediate

language program structures we defined are function type

structures. Functions can have reentry values. They also may

not have reentry values. Functions and function relationships

are parallel. They can be inserted in sets and transferred.

However, it is not permitted to insert definitions in sets.

Functions are the execution unit of the intermediate languages in

question. On the basis of function names, it is possible to

define a specially designated name main() to act as main

function. Within the main function, it is possible to transfer

any other function.

Intermediate language program = <main function>

{<function>}m m=0,l,...

<function> = <function head> <function body> <function tail>

<function> = PROGRAM <function name>; <function no.>;

<original machine language address>

<function body> = {<command block>}n n=0,l,2 ...

<function tail> = END

2. Intermediate Language Command Systems

First of all, we discuss a bit one type of abstraction

device needed by intermediate language. The characteristics are

as follows:

(1) Adeguately large memory storage devices.

(2) Adequately numerous data registers and address

registers.
(3) Intermediate language statement forms are quaternary

forms, that is:
<operation code> <operation no.l>; <operation no.2>;

<operation no.3>

This type of form is similar to quaternary form intermediate

code utilized in compilation systems. The advantages are:

A: Forms and compilation language command forms

approach each other. It is easy to take various types of

compilation commands and reflect them in the intermediate

language in question.
B: Quaternary forms have very strong flexibility.

They are advantageous to the production of high level language

expression forms.
(4) Operation numbers are composed of three parts:

addressing forms, variable names, displacement amounts.

(5) Possesses general arithmetical operations, logic

operations, relational operations, control flow operations, and

other such commands.
(6) Has function interior restructure command. /25

From the characteristics of abstract devices discussed

above, intermediate language commands which we designed can be

divided into the several categories below:

(1) function commands (2) control commands (3)

restructuring commands.
3. Intermediate Language Addressing Forms

As far as command systems associated with various types of

machines are concerned, the individual addressing forms are

different. In conjunction with this, they are dependent on the

individual machines. In view of the functions of intermediate

language in decompilation systems, when designing intermediate

language addressing forms, we should, as much as possible,

eliminate unique characteristics associated with command

addressing of the various types of machines. In conjunction with

that, we should abstract and standardize them. Despite various

types of machine command addressing forms each possessing special

characteristics, they, however, also have a common character.

With regard to the addressing of any operation number, in

general, they are included in nothing more than immediate

numbers, data or addresses taken from registers, and data or

addresses taken from memory storage units. Because of this, the

intermediate language addressing forms which we designed are:

(1) Immediate Addressing (IA)
(2) Direct Addressing (Register Direct Addressing or Memory

Storage Unit Direct Addressing) (DA)
(3) Indirect Addressing (Register Indirect Addressing or

Memory Storage Unit Indirect Addressing) (IDA)

4. Intermediate Language Command Block Types

Target code formed after translation of high level language

programs—through decompilation—forms into compilation programs.

Moreover, in general compilation language text, before each

subprogram, there are several related commands and functions

introduced. However, these do not correspond to the function

body statements of the original program. During decompilation

processes, there is only identification of the sections in

question, and semantic transformations are not carried out. As

result, we designate these commands as subprogram head null

commands. By the same reasoning, subprogram end sections also

have several commands related to escape functions. These are

designated subprogram end null commands. Subprogram head null

commands and subprogram end null commands are all designated as

null commands.

• Valid Commands: The commands between subprogram end null

commands and subprogram head null commands all correspond to

function body statements. These commands are designated as valid

commands.
• Block Header Lines: (1) the first valid command of a

function (or subprogram); (2) directional commands associated

with direct or conditional transfer commands; (3) that command

following direct or conditional transfer commands.

• HALT Block: A blank command block placed in a null command

position associated with function or subprogram end sections (it

only contains one blank command line) is designated as HALT block,

in conjunction with this, it is stipulated that all valid commands

associated with directional subprogram end null commands are

transferred toward HALT block header lines.
• Start Block: In front of each valid command associated

with functions (or subprograms), one start block is defined. It

marks the beginning of functions.
. HALT Block Complex: (1) HALT blocks belong to HALT block

complexes; (2) if block i contains only one direct transfer

command and is transferred toward a certain block belonging to a

HALT block complex, then, block i also belongs to the HALT block

complex.
. Valid Command Blocks: In accordance with written

functions, commands from one block header line to in front of the

next block header line belong to the same valid block.

. Forerunner Blocks and Follow On Blocks: if the final block

EBi command is a direct transfer command or conditional transfer

command, and it is directed toward block EBj or the final EBi

command is not a transfer command, however, EBj uses written

functions to follow right behind EBif then, EBi is designated as a

forerunner block of EBj. EBj is a follow on block of EBj..

. ED Block Complex: if EBL block does not belong to the HALT

block complex, however, it at least has a follow on block that

belongs to the HALT block complex, then, EBi is designated as

belonging to ED block complex.

8

Note: The primary purpose of defining ED block complex is

for the sake of solving for subprogram (or function) reentry-

values .
On the basis of intermediate language command

classifications and characteristics as well as definitions of

previously discussed block concepts, we take intermediate

language command blocks and divide them into the several types

below.
(1) Start Block: as previously defined.

(2) Function Block: only has one outcome.

(3) Decision Block: has two outcomes.
(4) Multi-branch Block: has multiple outcomes.

(5) HALT Block: as previously defined.
As far as the five types of blocks above are concerned, in

intermediate language control graphics, they form into five basic

control flow graphic nodes.
5. Intermediate Language Data Types
High level languages utilize rich data structures. In

conjunction with this, through data types, statements are

explained in order to explain definitions. However, these
statements have already not come back into existence after going

through compilation. In target code, there are also no
corresponding code sections. On the basis of compilation
principles, it is possible to know that compilation programs—in

accordance with high level language variables—explain data type

tables associated with statement structure variables. In the

tables are recorded such information as the nomenclature of

relevant variables, distribution addresses, and so on. During

code formation, high level language variables are taken and
reflected in the address elements or registers distributed to.

in conjunction with this, on the basis of variable types and

operation natures, corresponding commands and operation numbers

are produced.
Command systems associated with various types of machines

all contain rich addressing forms. When high level language is

realized on the machines in question, inspections are carried out

of different high level language data types in order to precisely

determine appropriate addressing forms so as to satisfy the

recovery from memory of various types of variables. Because of

this, high level language variable data type information in

machine language certainly does not completely disappear. It is

contained hidden in the following areas:

(1) operation codes (2) operation numbers and address

forms (3) distribution characteristics associated with various

registers.

In decompilation processes, we must go through data type

analysis, taking this implicitly contained information and

recovering it in full. In conjunction with this, level by level

abstract induction forms high level language data types.

Intermediate language—during decompilation processes—takes

on the function of forming a link between what precedes it and

what follows it. As a result, intermediate language should be

able to completely inherit data variable information in target

code. In conjunction with this, to a certain degree, abstract

induction forms basic data types. Following that, after data

type analysis, abstraction forms data types similar to ones in

high level language.
Intermediate language basic data types are: TL (integers),

length is 1, 2, 4 character segments; Tu (numbers without

symbols), length is 2 character segments; Tf (floating point

numbers), length is 4, 8 character segments; Tb (Boolean

numbers).
Intermediate language composite types are: POI, FUN, ARRAY,

Union, MARRAY, Struc.
On the basis of differing functional areas associated with

various types of intermediate language variables, it is possible

to take intermediate language variables and divide them into

overall variables (Lk), form parameter variables (IPk), local

variables (LVk), immediate numbers (IN), index register variables

(RBk), data register variables (Dk), temporary index register

10

variables (TRk), temporary data register variables (TDk), and

supplementary local variables (Tk). Among these, Tk is for the

sake of facilitating the production of forms of expression.

Besides that, there are a number of temporary variables

introduced. TDk and TRk are temporary variables used within

systems. They do not correspond to any variables in high level

language programs.
6. Intermediate Language CFG (Control Flow Graphic)

Above, we defined intermediate language blocks and their

types. Here, we introduce several basic concepts besides these

in order to describe the relationships between them, thereby

describing control structures associated with intermediate

language programs.

11

/27

• Definition 1: Program control flow graphics are single

flow graphs G=(V, E, n, f). Among these: 1) in flow graphics,

each node VL e V expresses one block bi in programs; 2) in flow

graphics, each directional side c^ = <Vi , Vj> e E corresponds

to the relationship between blocks bi and bj; 3) assuming nodes

V- , V- e V correspond to blocks bi and bj, then, the condition

which exists on side ci;J = <V± , Vj> e E is that bi is a precursor

block of bj; 4) f corresponds to HALT block.

• Definition 2: Transfer graphics are single flow graphs

G=(V, E, n0, f). Among these: 1) V represents various

subprograms within programs. n0 e V is the main program; 2) E

represents the assembly of all sides in graphics. Directional

side c- • = <V- , V-> e E represents subprogram V± single or

multiple iterations of transfer associated with subprogram VL;

3) f represents the most basic subprogram. It does not transfer

any other subprogram.
Decompilation is a transformation process associated with

functional eguivalence. Speaking in terms of control structures,

if one wishes to guarantee the eguivalence, then, it is necessary

to precisely preserve corresponding execution function

eguivalences between original machine language code and high

level language programs produced by decompilation, that is,

dynamic execution functions are the same. Due to this type of

relationship, after the formation of intermediate language from

machine language, intermediate language does not then need to be

concerned with the physical placement of various execution code

sections. The only concern is for program execution functions.

Moreover, program execution functions are determined by its

control flow direction. As a result, in the process of designing

intermediate language, we opted for the use of control flow

graphic CFG unrelated to machine code physical placement in order

to describe program execution functions, thereby guaranteeing the

equivalence of the two. In conjunction with this, it is possible

to make control flow analysis relatively independent (only

12

carried out on CFG). CFG has five types of nodes, that is, SN

(Start Node), FN (Function Node), DN (Decision Node), TN

(Terminal Node), and MN (Multi-branch Node). In conjunction with

this, they respectively correspond to the five types of blocks.

IV. INTERMEDIATE LANGUAGE REALIZATION

In the process of realizing decompilation, intermediate

language takes on the role of forming a link between what

precedes it and what comes after it. On the one hand, it

reguires inheriting all information associated with compilation

language. On the other hand, it also must carry out appropriate

abstract induction on compilation language. Because of this, in

the process of realizing intermediate language, there are two

primary parts included: intermediate language program production

and intermediate language variable information production. The

former—on the basis of functional equivalence—takes compilation

commands and transforms them into corresponding intermediate

language commands. The latter—on the basis of utilization

information associated with data variables in compilation

language—goes through appropriate recovery and transformation

methods and produces corresponding variable information at

relatively high levels.
1. Intermediate Language Program Production

On PC machines, turning compilation language into

intermediate language programs can be realized through the

processes described below:
(1) Scanning compilation language programs, on the basis of

control flow, take compilation programs and divide then into

block order.

13

(2) On the basis of relationships between various blocks,

construct compilation language program control flow graphics.

(3) Using blocks as units, take compilation language and

transform it into eguivalent intermediate language commands.

(4) Form intermediate language control flow graphics CFG.

When transforming compilation language into eguivalent

intermediate language commands, it is necessary to pay attention

to the several points below:
(a) As much as possible, eliminate redundant commands in

compilation language and do not lose various types of

information.
(b) Identify macro transfers and internal storage functions

In conjunction with this, obtain their parameters.

(c) Identify 8087 command operation numbers and their

functions.
(d) With regard to conditional transfer commands, on the

basis of conditional code attributes, change them into

corresponding comparative commands and true false transfer

(GOT/GOF) commands.
intermediate language control flow graphics are a weighted

directional graphic. Each node corresponds to a block. The

relationships between various nodes are described through

weighted values as shown in Fig.l. In this, T: represents a

true outcome. P: represents a false outcome. M: represents a

multi-branch outcome.

14

2. Formation of Simple Symbol Tables /28

Executable documents formed after software compiled in

high level language goes through compilation generally do not

contain symbol table information. Furthermore, there are no

clear variable type explanations. In them, only utilization

information associated with variables is contained. As far as

the formation of simple symbol tables is concerned, they are

simple properties associated with variables and recovered by

induction on the basis of variable utilization information.

Fig.l Intermediate Language Control Flow Graphic Sample

Variable utilization information primarily contains: variable

distribution rules, operation number length and addressing

methods, operation code semantics, function form parameter and

real parameter transmission and utilization, and so on. When

scanning and analyzing each function command, variable properties

are taken one by one and entered in corresponding tables thereby

constructing the simple symbol table shown in Fig.2. In it, TN:

type nodes are used to describe variable and function types.

15

V. CONCLUDING REMARKS

Intermediate language design and realization are the main

parts in decompilation processes. Intermediate language control

flow paths and variable information are still a type of

relatively low level form. It is still necessary during later

control flow analysis and data type analysis to reconstruct, step

by step, from lower level forms, high level language forms of

control flow paths and data types.

*f TN 1 Typ,. NoJc

Fig.2 Simple Symbol Table (1) Overall Variable Table (2)
Serial No. (3) Nomenclature (4) Address (5) Attribute (6)
Type POI (7) Variable (8) Function (9) Local Variable Table
(10) Function Type POI (11) Zone POI

16

/29
REFERENCES

1 3 M£m, *&#. ##iMm££68000C£fST?£gE#lW£Jl. it#fll#ffi. 11:10(1988)633-637.
2 J *Ä£.' £JR». *«R. Va«. ^S£. »P+fiI»*»ffl«*JR«IECDS. £JEI>lk***ft. 11:4(1988)

1-7.
3D *J£ffl, 68O0OC££#gJ?+M®^H#*SM&Tf-i5£2E. /hfflftfflitJWliK«:. 9:2(1988)1-10.

17

DISTRIBUTION IIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION MICROFICHE

B085 DIA/RTS-2FI 1
C509 BALD0C509 BAUJSnC RES IAB 1
C510 R&T IABS/AVEADCOM 1
C513 ÄRRADCOM 1
C535 AVRADCEM/TSARCOM 1
C539 TRASANA 1
Q592 FSTC 4
Q619 MSIC REDSTONE 1
Q008 NTIC 1
Q043 AFMIC-IS 1
E404 AEDC/DOF 1
E408 AFWL 1
E410 AFDTC/IN 1
E429 SD/IND 1
P005 DOE/ISA/DDI 1
P050 CIA/OCR/ADD/SD 2
1051 AFTT/IDE 1
PO90 NSA/CDB 1

Microfiche Nbr: FTD95C000327L
NAIC-ID(RS)T-0021-95

